Air/water inverter heat pumps with axial fans with double refrigerant circuit

Technical and construction characteristics

The reverse cycle heat pumps of the HPE 66÷115 INVERTER series have been designed for commercial and industrial applications, they are extremely versatile and designed for heat pump operation with the production of hot water for space heating and /o for sanitary use at temperatures up to 58 °C. The use of scroll compressor technology, specially designed for operation with R410A, combined with a compressor with INVERTER brushless motor, the fans always driven by inverter, as well as the integrated variable flow circulators together with the electronic expansion valve, optimize consumption and the operational efficiency of the system as a whole.

All units are supplied as standard with the following control and protection devices: return water temperature probe, work and antifreeze probe, high and low pressure transducers, compressor intake and discharge temperature probes, fan thermal protection, side flow switch water, high pressure switch.

HYDRAULIC CIRCUIT

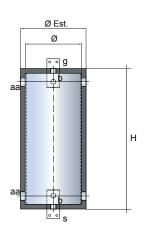
The heat pump chillers of the HPE 66÷115 INVERTER series are supplied with: plate exchanger with double refrigeration circuit and single hydraulic circuit, inlet pressure gauge and outlet connection, exchanger for evaluating pressure drops, service tap, flow switch protection, automatic air vent valve and safety valve (6 bar).

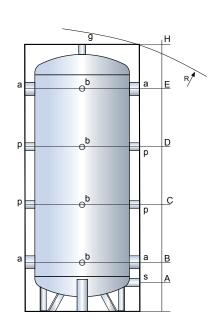
The version with integrated circulator includes a pump with an AC motor driven by an inverter to regulate the water flow rate between 60 and 100%, also suitable for the use of chilled water and directly managed by the on-board machine control.

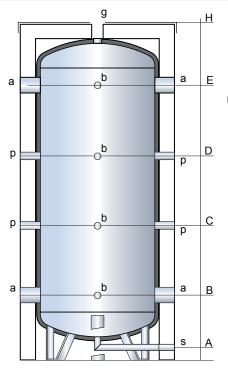
Model	Cooling	Thermal power	Code	€
	power kW	kW		
HPE 66 INVERTER	65,59	68,40	37981801	40.200,00
HPE 75 INVERTER	74,60	74,70	37981802	42.700,00
HPE 85 INVERTER	83,90	85,60	37981803	44.820,00
HPE 95 INVERTER	94,70	93,34	37981804	49.350,00
HPE 105 INVERTER	105,60	102,47	37981805	52.230,00
HPE 115 INVERTER	114,30	111,47	37981806	53.420,00

Pompe di calore inverter aria/acqua con ventilatori assiali a doppio circuito frigorifero

Accessories HPE 66÷115 INVERTER


ACF


Thermal flywheel for the storage of both hot and cold technical water, equipped with large connections to allow the flow of high flow rates. The wide range of capacities from 200 to 2000 liters makes them suitable for use both on small domestic systems and in medium-large systems. In addition to its function as a thermal flywheel, this appliance also performs the function of a hydraulic separator, making the flow rate of the heat source independent from that of the system in which it is installed. The heat carrier fluid contained in the tank must operate in a "closed circuit" (i.e. oxygen-free) in order to avoid corrosive phenomena. Insulated with anti-condensation insulation with low heat dispersion.


			Codice	€
A	`=	50	37306118	540,00
A		100	37306119	640,00
A	CF	200	37306120	670,00
A	CF	300	37306130	710,00
A	CF	500	37306150	1.000,00
A	CF	800	37306160	1.480,00
A	CF	1000	37306170	1.660,00
A	CF	1500	37306180	2.530,00
A	CF	2000	37306190	3.180,00

ACF dimensions and quotas

- a Entry/exit use
- **b** Control tools
- g Vent / safety valve
- Service connection
- s I unload

DESCRIPTION	DIMENSIONS (mm)								
	Ø	Н	Ø EST **	R *	Weight Kg				
ACF 50	-	-	-	-	-				
ACF 100	-	-	-	-	-				
ACF 200	450	1330	550	1450	33				
ACF 300	500	1610	600	1730	42				
ACF 500	650	1665	750	1840	68				
ACF 800	790	1700	890	1930	86				
ACF 1000	790	2060	890	2255	102				
ACF 1500	1000	2145	1280	2235	147				
ACF 2000	1100	2395	1380	2465	212				

^{*} For capacities from 200 to 1000 Lt the tipping diagonal refers to the insulated tank

^{**} Non-removable insulation except for capacities 1500 - 2000 Lt (only 130 mm polyester insulation removable)

DESCRIPTION	QUOTES (mm)					ATTACKS (GAS)				
	Α	В	С	D	E	а	b	g	р	s
ACF 50	-	-	-	-	-	1" 1/4	1/2"	1/2"	-	1/2"
ACF 100	105	210	380	545	710	1" 1/2	1/2"	1" 1/4	1" 1/2	1"
ACF 200	135	220	510	805	1095	2"	1/2"	1" 1/4	1" 1/2	1"
ACF 300	125	275	625	975	1320	3"	1/2"	1" 1/4	1" 1/2	1"
ACF 500	155	305	655	1005	1350	3"	1/2"	1" 1/4	1" 1/2	1"
ACF 800	170	320	670	1020	1365	3"	1/2"	1" 1/2	1" 1/2	1"
ACF 1000	170	320	785	1250	1710	3"	1/2"	1" 1/2	1" 1/2	1"
ACF 1500	110	485	915	1350	1780	3"	1/2"	1" 1/2	1" 1/2	1"
ACF 2000	100	490	1020	1550	1985		1/2"	1" 1/2	1" 1/2	1"

Air/water inverter heat pumps with axial fans with double refrigerant circuit

Accessories HPE 66÷115 INVERTER	Code	€
Integrated AC pump	37981001	2.260,00
Antifreeze kit	37981002	530,00
GI module for terminal block expansion	37981003	580,00
Silencing HPE 66÷115 INVERTER	37981007	900,00
Super silencing HPE 66 - 75 - 85 - 95 INVERTER	37981004	2.710,00
Super silencing HPE 105 - 115 INVERTER	37981005	4.230,00
Anti-corrosion treatment	37981006	5.060,00
Circuit breakers	37981008	740,00
Touchscreen remote control	37980013	610,00
Wall remote control	37980017	300,00
Anti-vibration	37981009	440,00
Interface activation Modbus RS485	37980011	800,00
Sequence control device, phase failure + minimum and maximum voltage relay	37980016	360,00

Carpentry

All the units in the HPE $66 \div 115$ INVERTER series are produced in hot-dip galvanized sheet metal and painted after processing with polyurethane powders in an oven at $180\,^{\circ}$ C to ensure the best resistance to atmospheric agents.

Fan

The fan is made of fibre-reinforced plastic and is of the axial type with wing profile blades. It is statically and dynamically balanced and supplied complete with protective grille and mouthpiece. The electric motor used is modulated via inverter, directly coupled and equipped with integrated thermal protection. The motor has an IP 54 protection degree according to CEI EN 60529.

Control V.415

New control logic and display interface installed on all A2B Accorroni E.G. units. of new generation HPE 66÷115 INVERTER. Allows rapid maintenance with parameter and firmware updates from a USB device. Increase in memory with implementation of new logic.

Refrigeration circuits

The refrigeration circuits are made using components from leading international companies and according to the UNI EN 13134 regulation regarding brazing and welding processes. The refrigerant gas used is R410A. Each refrigerant circuit includes in its basic version: 4-way cycle reversal valve, electronic expansion valve, liquid separator, liquid receivers, auxiliary circuit to reduce defrost times, oil recovery circuit, non-return valves, inspection valves for maintenance and control, safety device according to PED regulations (high pressure switch), pressure transducers, precision probes, high capacity filter drier, mechanical filters.

Air/water inverter heat pumps with axial fans with double refrigerant circuit

Compressors

The compressors are Scroll type, mounted on rubber vibration dampers.

For each of the 2 circuits there is a DC inverter compressor.

In this way it is possible, in each circuit, to continuously modulate between the minimum power of the inverter compressor alone and the sum of the maximum powers of all the compressors in the circuit. On all units it is therefore possible to divide the power output and absorbed power up to 9% of the maximum on models with 4 compressors and up to 6% in models with 6 compressors. Crankcase heater is standard.

Inspection of the compressors is possible through the front panel of the unit which allows maintenance even with the unit in operation.

Electrical cabinet

The electrical panel is built in compliance with current European regulations, with IP54 protection rating and contains all the electromechanical and electronic regulation and control components.

The electrical panel is equipped with a terminal block with dry contacts for remote ON-OFF, summer/winter switching, the domestic water sensor, and the remote control panel. The addition of the optional GI module allows the management of further system functions.

Control system

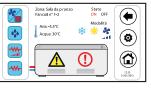
All HPE 66÷115 INVERTER units are equipped with a control unit equipped with a microprocessor with overheating control logic, an electronic thermostatic valve and solenoid valves, pressure transducers and temperature probes.

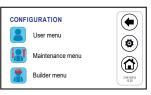
The CPU also controls the following functions: water temperature regulation, antifreeze protection, timing and sequence activation of the compressors, alarm management and reset, fan and pump modulation.

Upon request, the microprocessor can be connected to remote control BMS systems via ModBus protocol.

The control system, together with INVERTER technology and on-board sensors, suddenly and continuously monitors and adapts the performance of the inverter compressor, circulator and fan.

Multifunction touch screen remote control


The touch screen remote control is used for the centralized management of a chiller/heat pump network.


It can also be used for partial functions (for example as a remote panel for a single chiller/heat pump or as a room thermostat to manage some fan coil areas). It integrates humidity and temperature sensors for thermo-hygrometric analysis of the environment and double set point management for radiant floor systems that use a dehumidification system.

The very intuitive interface simplifies the use of the control; all functions are easily set up thanks to the use of immediately understandable synoptics.

The remote control periodically monitors and queries the network, there is a cycle time between the signal or command request and the activation of the function, the cycle time depends on the size of the fan coil and/or heat pump network.

Chiller Giorno Temperatura Ora	Lunedi D (h) Normal Eco Off da 00.00 a 01.15	•
00 04 08	12 16 20 00	12.25 31.01/2013


Domestic water function

Heat pumps can also produce domestic water by managing an external 3-way valve and an appropriately sized boiler.

By connecting multiple heat pumps in cascade, the user can decide whether all or only part of them can participate in the "DHW" function.

Chronothermostat function

The panel contains within it the weekly chronothermostat function with 2 temperature levels, T and Teco, both for the control of the hydronic terminals and for the control of the heat pumps. The "chronothermostat" is performed separately for hydronic terminals and heat pumps.

Air/water inverter heat pumps with axial fans with double refrigerant circuit

Legend multifunction touch screen remote control Hi-T

Room thermostat

The thermostat function allows perfect management of the room temperature in the various declared fan coil zones, regulating the air conditioning according to the temperature detected.

Humidity control

Integrated humidity and temperature sensor for double setpoint management and room thermo-hygrometric regulation.


Web server

Supervision, firmware update, system status, alarm history via ethernet port.

Double Set Point

Gestione deumidificatore per impianti a pavimento.

Screed function

Drying of the screed by setting time and temperature parameters.

USB

Software programming, alarm history download, updating parameters of connected units.

Boiler enabling

Advanced management of backup sources, with replacement and/or integration logic based on climatic conditions for different external operating temperature bands.

Istruction

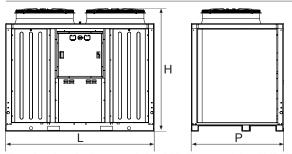
Off-line and online integration of instructions for immediate understanding of how to use the control, equipped with graphic support for intuitive consultation.

Timer

Weekly graphic programming of the operating status of the system and the management of the legionella disinfestation cycle.

External serving units in parallel

Management of a circulation pump external to the heat pumps of the HPE 66÷115 INVERTER series. Operation is possible if the units are connected to a Hi-T keyboard, the machines are configured in hydraulic parallel, option CI =2. In this configuration the production of domestic hot water is allowed.


Single network pump

It allows the management of a network of heat pumps, up to 7 HPE INVERTERS.

Air/water inverter heat pumps with axial fans with double refrigerant circuit

Dimensions HPE HPE 66÷115 INVERTER

Modelli	HPE 66	HPE 75	HPE 85	HPE 95	HPE 105	HPE 115
L	2250	2250	2250	2250	2250	2250
Р	1170	1170	1170	1170	1170	1170
Н	1985	1985	1985	1985	1985	1985

Values in mm

Technical data tal	ble HPE 66÷11	5 INVER	RTER					
DESCRIPTION		U.M.	HPE INV 66	HPE INV 75	HPE INV 85	HPE INV 95	HPE INV 105	HPE INV 115
Cooling Cooling		•						
capacity (1)		kW	65,59	74,6	83,9	94,7	105,6	114,3
Power absorbed (1)		kW	22,62	25,72	28,83	32,66	36,16	39,40
E.E.R. (1)		W/W	2,90	2,90	2,91	2,90	2,92	2,90
Cooling capacity (2)		kW	79,60	90,16	102,8	113,3	127,3	139,3
Power absorbed (2)		kW	21,81	24,64	28,16	31,04	34,88	38,16
E.E.R. (2)		W/W	3,65	3,66	3,65	3,65	3,65	3,65
SEER (5)		W/W	3,82	3,85	3,81	3,80	3,83	3,81
Water flow rate (1)		I/s	3,14	3,57	4,01	4,53	5,05	5,47
Pressure drops (1)		kPa	32	36	37	34	33	38
Heating		1111 01						
Thermal power (3)		kW	68,40	74,70	85,6	93,34	102,47	111,47
Power absorbed (3)		kW	16,85	18,44	21,14	23,87	25,3	28,58
C.O.P. (3)		W/W	4,06	4,05	4,05	3,91	4,05	3,90
Thermal power (4)		kW	65,86	71,0	82,12	88,57	97,13	108,28
Power absorbed (4)		kW	20,52	22,19	25,66	27,68	30,35	36,09
C.O.P. (4)		W/W	3,21	3,20	3,20	3,20	3,20	3,00
SCOP (6)		W/W	3,58	3,55	3,53	3,54	3,57	3,50
Water flow rate (4)		I/s	3,15	3,40	3,93	4,24	4,65	5,18
User side exchanger pr	ressure drone (4)	kPa	30	31	31	32	27	27
Energy efficiency	COSCIC GIOPS (4)	i Ki u	- 00	01	A+/A+	02		A+/A++
Compressor					7.77.			70.770
Guy					Sc	roll		
Compressors		n.	4 6					
Refrigerant circuits		n.				2		
Refrigerant quantity (7)		kg	13,4	14,2	14,3	13,4	14,2	14,3
Fan								
Nominal air flow		m³/s	6,5x2	7x2	7,5x2	8x2	8,5x2	9x2
Hydraulic circuit								
Hydronic kit maximum	pressure	bar				6		
Hydraulic connections	•				2"	1/2		
Minimum water volume	(8)	I	200 260					
Acoustic data	` '							
	Standard	dB(A)	82,5	83	83,5	84	84	84,5
Sound power (9)	Silence	dB(A)	81	81,5	82	82,2	82,2	82,7
	Super Silence	dB(A)	80,2	80,7	81,2	81,7	81,7	82,2
	Standard	dB(A)	50,7	51,2	51,7	52,2	52,5	52,7
Sound pressure (10)	Silence	dB(A)	49,2	49,7	50,2	50,4	50,4	50,9
, ,	Super Silence	dB(A)	48,4	48,9	49,4	49,9	49,9	50,4
Electrical data		, , ,						
Electrical supply Max				4	00V/3+N/50H	lz		
absorbed power Max		kW	39,90	42,3	46,7	52,3	55,8	63,0
absorbed current		Α	60,1	63,5	70,3	78,7	83,9	94,7
Weight		1					,	- ,
Shipping weight		Kg	943	955	1011	1026	1128	1142
Operating weight		Kg	923	946	996	1011	1105	1120
- r · - · · · · · · · · · · · · · · ·		9		<u> </u>			1	

Performances referred to the following conditions:

- (1) Cooling: external air temperature 35 °C; inlet/outlet water temperature 12/7 °C.
 (2) Cooling: external air temperature 35 °C; inlet/outlet water temperature 23/18 °C
 (3) Heating: external air temperature 7 °C d.b. 6 °C b.u.; inlet/outlet water temperature 30/35 °C.
 (4) Heating: external air temperature 7 °C d.b. 6 °C b.u.; inlet/outlet water temperature 40/45 °C
- (5) Cooling: inlet/outlet water temperature 12/7 °C.
- (6) Heating: average climate conditions; Tbiv = -7 °C; inlet/outlet water temperature 30/35 °C.
- (7) Indicative data and subject to change. For the correct data, always refer to the technical label on the unit.(8) Calculated for a decrease in the system water temperature of 10 °C with a defrost cycle lasting 6 minutes.
- (9) Sound power: condition (3); value determined on the basis of measurements carried out in accordance with UNI EN ISO 9614-2 regulation, in compliance with what is required by certificazione Eurovent.
- Sound pressure: Value calculated from the sound power level using ISO 3744:2010, referred to 10 m away from the unit.
 - (*) The useful head data and pump characteristics refer to the EC integrated circulator (as optional)
 - N.B. The performance data reported are indicative and may be subject to change. Furthermore, the yields declared in points (1), (2), (3) and (4) are to be understood as referring to the instantaneous power according to EN 14511. The data declared in points (5) and (6) are determined according to UNI EN 14825.

